Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods

Thuy Duong Nguyen-Phan, Si Luo, Dimitriy Vovchok, Jordi Llorca, Jesús Graciani, Javier Fernández Sanz, Shawn Sallis, Wenqian Xu, Jianming Bai, Louis F J Piper, Dmitry Polyansky, Etsuko Fujita, Sanjaya D. Senanayake, Dario J. Stacchiola, José A. Rodriguez

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

The immobilization of miniscule quantities of RuO2 (∼0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.

Original languageEnglish
Pages (from-to)407-417
Number of pages11
JournalACS Catalysis
Volume6
Issue number1
DOIs
Publication statusPublished - Jan 4 2016

Fingerprint

Nanorods
Surface defects
Charge carriers
Nanowires
Energy gap
Irradiation
Water
titanium dioxide

Keywords

  • H production
  • heterojunction
  • ruthenium
  • titanium
  • water splitting

ASJC Scopus subject areas

  • Catalysis

Cite this

Nguyen-Phan, T. D., Luo, S., Vovchok, D., Llorca, J., Graciani, J., Sanz, J. F., ... Rodriguez, J. A. (2016). Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods. ACS Catalysis, 6(1), 407-417. https://doi.org/10.1021/acscatal.5b02318

Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods. / Nguyen-Phan, Thuy Duong; Luo, Si; Vovchok, Dimitriy; Llorca, Jordi; Graciani, Jesús; Sanz, Javier Fernández; Sallis, Shawn; Xu, Wenqian; Bai, Jianming; Piper, Louis F J; Polyansky, Dmitry; Fujita, Etsuko; Senanayake, Sanjaya D.; Stacchiola, Dario J.; Rodriguez, José A.

In: ACS Catalysis, Vol. 6, No. 1, 04.01.2016, p. 407-417.

Research output: Contribution to journalArticle

Nguyen-Phan, TD, Luo, S, Vovchok, D, Llorca, J, Graciani, J, Sanz, JF, Sallis, S, Xu, W, Bai, J, Piper, LFJ, Polyansky, D, Fujita, E, Senanayake, SD, Stacchiola, DJ & Rodriguez, JA 2016, 'Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods', ACS Catalysis, vol. 6, no. 1, pp. 407-417. https://doi.org/10.1021/acscatal.5b02318
Nguyen-Phan TD, Luo S, Vovchok D, Llorca J, Graciani J, Sanz JF et al. Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods. ACS Catalysis. 2016 Jan 4;6(1):407-417. https://doi.org/10.1021/acscatal.5b02318
Nguyen-Phan, Thuy Duong ; Luo, Si ; Vovchok, Dimitriy ; Llorca, Jordi ; Graciani, Jesús ; Sanz, Javier Fernández ; Sallis, Shawn ; Xu, Wenqian ; Bai, Jianming ; Piper, Louis F J ; Polyansky, Dmitry ; Fujita, Etsuko ; Senanayake, Sanjaya D. ; Stacchiola, Dario J. ; Rodriguez, José A. / Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods. In: ACS Catalysis. 2016 ; Vol. 6, No. 1. pp. 407-417.
@article{f33e5e52154c416b91f08b3630e54f08,
title = "Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods",
abstract = "The immobilization of miniscule quantities of RuO2 (∼0.1{\%}) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.",
keywords = "H production, heterojunction, ruthenium, titanium, water splitting",
author = "Nguyen-Phan, {Thuy Duong} and Si Luo and Dimitriy Vovchok and Jordi Llorca and Jes{\'u}s Graciani and Sanz, {Javier Fern{\'a}ndez} and Shawn Sallis and Wenqian Xu and Jianming Bai and Piper, {Louis F J} and Dmitry Polyansky and Etsuko Fujita and Senanayake, {Sanjaya D.} and Stacchiola, {Dario J.} and Rodriguez, {Jos{\'e} A.}",
year = "2016",
month = "1",
day = "4",
doi = "10.1021/acscatal.5b02318",
language = "English",
volume = "6",
pages = "407--417",
journal = "ACS Catalysis",
issn = "2155-5435",
publisher = "American Chemical Society",
number = "1",

}

TY - JOUR

T1 - Visible Light-Driven H2 Production over Highly Dispersed Ruthenia on Rutile TiO2 Nanorods

AU - Nguyen-Phan, Thuy Duong

AU - Luo, Si

AU - Vovchok, Dimitriy

AU - Llorca, Jordi

AU - Graciani, Jesús

AU - Sanz, Javier Fernández

AU - Sallis, Shawn

AU - Xu, Wenqian

AU - Bai, Jianming

AU - Piper, Louis F J

AU - Polyansky, Dmitry

AU - Fujita, Etsuko

AU - Senanayake, Sanjaya D.

AU - Stacchiola, Dario J.

AU - Rodriguez, José A.

PY - 2016/1/4

Y1 - 2016/1/4

N2 - The immobilization of miniscule quantities of RuO2 (∼0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.

AB - The immobilization of miniscule quantities of RuO2 (∼0.1%) onto one-dimensional (1D) TiO2 nanorods (NRs) allows H2 evolution from water under visible light irradiation. Rod-like rutile TiO2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO2(110) grown as 1D nanowires on rutile TiO2(110), which occurs only at extremely low loads of RuO2, leads to the formation of a heterointerface that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.

KW - H production

KW - heterojunction

KW - ruthenium

KW - titanium

KW - water splitting

UR - http://www.scopus.com/inward/record.url?scp=84953291164&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84953291164&partnerID=8YFLogxK

U2 - 10.1021/acscatal.5b02318

DO - 10.1021/acscatal.5b02318

M3 - Article

AN - SCOPUS:84953291164

VL - 6

SP - 407

EP - 417

JO - ACS Catalysis

JF - ACS Catalysis

SN - 2155-5435

IS - 1

ER -