Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal

Y. Zhang, Z. Islam, Y. Ren, P. A. Parilla, S. P. Ahrenkiel, P. L. Lee, A. Mascarenhas, M. J. McNevin, I. Naumov, H. X. Fu, X. Y. Huang, Jing Li

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

There are very few materials that exhibit zero thermal expansion (ZTE), and of these even fewer are appropriate for electronic and optoelectronic applications. We find that a multifunctional crystalline hybrid inorganic-organic semiconductor, β-ZnTe(en)0.5 (en denotes ethylenediamine), shows uniaxial ZTE in a very broad temperature range of 4-400 K, and concurrently possesses superior electronic and optical properties. The ZTE behavior is a result of compensation of contraction and expansion of different segments along the inorganic-organic stacking axis. This work suggests an alternative route to designing materials in a nanoscopic scale with ZTE or any desired positive or negative thermal expansion (PTE or NTE), which is supported by preliminary data for ZnTe(pda)0.5 (pda denotes 1,3-propanediamine) with a larger molecule.

Original languageEnglish
Article number215901
JournalPhysical Review Letters
Volume99
Issue number21
DOIs
Publication statusPublished - Nov 19 2007

Fingerprint

thermal expansion
crystals
organic semiconductors
ethylenediamine
electronics
contraction
routes
optical properties
expansion
molecules
temperature

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Zhang, Y., Islam, Z., Ren, Y., Parilla, P. A., Ahrenkiel, S. P., Lee, P. L., ... Li, J. (2007). Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal. Physical Review Letters, 99(21), [215901]. https://doi.org/10.1103/PhysRevLett.99.215901

Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal. / Zhang, Y.; Islam, Z.; Ren, Y.; Parilla, P. A.; Ahrenkiel, S. P.; Lee, P. L.; Mascarenhas, A.; McNevin, M. J.; Naumov, I.; Fu, H. X.; Huang, X. Y.; Li, Jing.

In: Physical Review Letters, Vol. 99, No. 21, 215901, 19.11.2007.

Research output: Contribution to journalArticle

Zhang, Y, Islam, Z, Ren, Y, Parilla, PA, Ahrenkiel, SP, Lee, PL, Mascarenhas, A, McNevin, MJ, Naumov, I, Fu, HX, Huang, XY & Li, J 2007, 'Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal', Physical Review Letters, vol. 99, no. 21, 215901. https://doi.org/10.1103/PhysRevLett.99.215901
Zhang Y, Islam Z, Ren Y, Parilla PA, Ahrenkiel SP, Lee PL et al. Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal. Physical Review Letters. 2007 Nov 19;99(21). 215901. https://doi.org/10.1103/PhysRevLett.99.215901
Zhang, Y. ; Islam, Z. ; Ren, Y. ; Parilla, P. A. ; Ahrenkiel, S. P. ; Lee, P. L. ; Mascarenhas, A. ; McNevin, M. J. ; Naumov, I. ; Fu, H. X. ; Huang, X. Y. ; Li, Jing. / Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal. In: Physical Review Letters. 2007 ; Vol. 99, No. 21.
@article{e67f82fe94594c9d8b6aeef38b0ec0a9,
title = "Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal",
abstract = "There are very few materials that exhibit zero thermal expansion (ZTE), and of these even fewer are appropriate for electronic and optoelectronic applications. We find that a multifunctional crystalline hybrid inorganic-organic semiconductor, β-ZnTe(en)0.5 (en denotes ethylenediamine), shows uniaxial ZTE in a very broad temperature range of 4-400 K, and concurrently possesses superior electronic and optical properties. The ZTE behavior is a result of compensation of contraction and expansion of different segments along the inorganic-organic stacking axis. This work suggests an alternative route to designing materials in a nanoscopic scale with ZTE or any desired positive or negative thermal expansion (PTE or NTE), which is supported by preliminary data for ZnTe(pda)0.5 (pda denotes 1,3-propanediamine) with a larger molecule.",
author = "Y. Zhang and Z. Islam and Y. Ren and Parilla, {P. A.} and Ahrenkiel, {S. P.} and Lee, {P. L.} and A. Mascarenhas and McNevin, {M. J.} and I. Naumov and Fu, {H. X.} and Huang, {X. Y.} and Jing Li",
year = "2007",
month = "11",
day = "19",
doi = "10.1103/PhysRevLett.99.215901",
language = "English",
volume = "99",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "21",

}

TY - JOUR

T1 - Zero thermal expansion in a nanostructured inorganic-organic hybrid crystal

AU - Zhang, Y.

AU - Islam, Z.

AU - Ren, Y.

AU - Parilla, P. A.

AU - Ahrenkiel, S. P.

AU - Lee, P. L.

AU - Mascarenhas, A.

AU - McNevin, M. J.

AU - Naumov, I.

AU - Fu, H. X.

AU - Huang, X. Y.

AU - Li, Jing

PY - 2007/11/19

Y1 - 2007/11/19

N2 - There are very few materials that exhibit zero thermal expansion (ZTE), and of these even fewer are appropriate for electronic and optoelectronic applications. We find that a multifunctional crystalline hybrid inorganic-organic semiconductor, β-ZnTe(en)0.5 (en denotes ethylenediamine), shows uniaxial ZTE in a very broad temperature range of 4-400 K, and concurrently possesses superior electronic and optical properties. The ZTE behavior is a result of compensation of contraction and expansion of different segments along the inorganic-organic stacking axis. This work suggests an alternative route to designing materials in a nanoscopic scale with ZTE or any desired positive or negative thermal expansion (PTE or NTE), which is supported by preliminary data for ZnTe(pda)0.5 (pda denotes 1,3-propanediamine) with a larger molecule.

AB - There are very few materials that exhibit zero thermal expansion (ZTE), and of these even fewer are appropriate for electronic and optoelectronic applications. We find that a multifunctional crystalline hybrid inorganic-organic semiconductor, β-ZnTe(en)0.5 (en denotes ethylenediamine), shows uniaxial ZTE in a very broad temperature range of 4-400 K, and concurrently possesses superior electronic and optical properties. The ZTE behavior is a result of compensation of contraction and expansion of different segments along the inorganic-organic stacking axis. This work suggests an alternative route to designing materials in a nanoscopic scale with ZTE or any desired positive or negative thermal expansion (PTE or NTE), which is supported by preliminary data for ZnTe(pda)0.5 (pda denotes 1,3-propanediamine) with a larger molecule.

UR - http://www.scopus.com/inward/record.url?scp=36248992264&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=36248992264&partnerID=8YFLogxK

U2 - 10.1103/PhysRevLett.99.215901

DO - 10.1103/PhysRevLett.99.215901

M3 - Article

VL - 99

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 21

M1 - 215901

ER -